
Approximating Material Interfaces during Data Simplification

David E. Sigeti∗ Benjamin F. Gregorski†

John Ambrosiano ∗ Gerald Graham ∗

Mark A. Duchaineau‡ Bernd Hamann † Kenneth I. Joy †

∗ Los Alamos National Laboratory
† University of California, Davis

‡ Lawrence Livermore National Laboratory

1 Introduction

We present a new method for simplifying large data sets
that contain material interfaces. Material interfaces embed-
ded in the meshes of computational data sets are often a
source of error for simplification algorithms because they
represent discontinuities in the scalar or vector fields over
a cell. By representing material interfaces explicitly in a
data simplification process, we are able to provide separate
field representations for each material over a single cell and,
thus, to represent the fields much more accurately. Our al-
gorithm uses a multiresolution tetrahedral mesh supporting
fast coarsening and refinement capabilities and error bounds
for feature preservation. We represent a material interface
or other surface of discontinuity as the zero set of a signed
distance function. This representation makes it possible to
maintain continuity of the surface across cell boundaries. It
also makes it possible to represent more complex interface
structures within a cell, such as T-intersections. Within a
cell, a field is represented on either side of the surface of
discontinuity by separate linear functions. These functions
are determined by true and “ghost” values of the field at the
vertices of the cell. By requiring that each vertex have only
one ghost value for a given field and material, we are able
to avoid introducing spurious discontinuities in the fields at
cell boundaries. The use of linear functions determined by
ghost values makes it unnecessary to divide the original cells
in the mesh along the surface of discontinuity, avoiding the
resultant introduction of complex cell types and field rep-
resentations. It also decouples the field representation from
the representation of the surface of discontinuity, making it
easier to represent fields when the material interfaces are
more complex. Both the signed distance function that de-
fines the surface of discontinuity and the ghost values that
determine the field representations are handled very simply
during refinement and coarsening of the mesh ensuring that
all spurious discontinuities can be avoided with a minimum
of computation and programming effort. We have applied
our algorithm to simplification of a test problem from a well
known fluid dynamics code with excellent results. Graphi-
cal and numerical results are presented. Furthermore, our
multiresolution representation can be applied to other kinds
of surfaces, e.g. isosurfaces.

2 Multiresolution Tetrahedral Mesh

As the geometric basis for our simplification algorithm we
use the subdivision of a tetrahedral mesh presented by Zhou

∗{ambro,ggraham,sigeti}@lanl.gov
†{gregorsk,hamann,joy}@cs.ucdavis.edu
‡{duchaineau1}@llnl.gov

et al [1]. This framework has an important advantage
over other multiresolution spatial data structures such as an
octree—it makes it easy to avoid introducing spurious dis-
continuities into our representations of fields. The way we
perform the binary subdivision ensures that the tetrahedral
mesh will always be a conformant, i.e, all edges in the mesh
end at the endpoints of other edges and not in the interior
of edges. The simplest representation for a field within a
tetrahedral cell is just the unique linear function that inter-
polates field values specified at the cell’s vertices. In the case
of a conformant mesh, this natural field representation will
be continuous across cell boundaries, resulting in a globally
C0 representation.
We have generalized the implementation presented by

Zhou et al by removing the restriction that the input data
needs to be given on a regular rectilinear mesh consisting
of (2N + 1) × (2N + 1) × (2N + 1) points. A variety of
input meshes can be supported by interpolating field val-
ues to the vertices of the multiresolution tetrahedral mesh.
In general, any reasonable interpolation procedure may be
used. In some cases, the procedure may be deduced from
the physics models underlying the simulation that produced
the data set. In other cases, a general-purpose interpolation
algorithm will be appropriate.
We construct our data structure as a binary tree in a top-

down fashion. Data from the input data set, including grid
points and interface polygons, are assigned to child cells at
the time that their parent is split.
The other basis for our algorithms is the ROAM system,

described in [2]. ROAM uses priority queue-driven split and
merge operations to provide optimal real-time display of tri-
angle meshes for terrain rendering applications. The tetrahe-
dral mesh structure used in our framework can be regarded
as an extension to tetrahedral meshes of the original ROAM
data structure for triangle meshes.
Since our data structure is defined recursively as a binary

tree, a representation of the original data can be computed
in a preprocessing step, and we can utilize the methods de-
veloped in ROAM to efficiently select a representation that
satisfies an error bound or a desired cell count. This makes
the framework ideal for interactive display.
Strict L∞ error bounds are incorporated into the subdi-

vision process, see Section 5 below.

3 Representing Material Interfaces

In the class of input datasets with which we are working,
material interfaces are represented as triangle meshes. In
the case that these triangle meshes are not known, they are
extracted from volume fraction data by a material inter-
face reconstruction technique described in [3] and [4] (The

Figure 1: True and approximated interfaces.

volume fractions resulting from numerical simulations indi-
cate what percentages of which materials are present in each
cell.). Such an interface reconstruction technique produces
a set of crack-free triangle meshes and normal vector infor-
mation that can be used to determine on which side and in
which material a point in space lies.
Within one of our tetrahedra, an approximate material

interface is represented as the zero set of a signed distance
function. Each vertex of a tetrahedron is assigned a signed
distance value for each of the material interfaces in the tetra-
hedron. This value is simply the minimum distance from the
vertex to the interface. The sign of the distance is given by
the side of the interface on which the vertex lies.
Figure 1 shows a two-dimensional example of two triangles

forming a conformant mesh, crossed by an interface (shown
in red). The minimum distances from the vertices of the
triangles to the interface are shown as dotted lines. The dis-
tances for vertices on one side of the interface (say, above the
interface) are assigned positive values and those on the other
side are assigned negative values. These signed distance val-
ues at the vertices will then determine linear functions in
each of the triangles and the approximated interface (shown
in blue) will be the zero set of these linear functions. Be-
cause the mesh is conformant, the linear functions in the
two triangles will agree on their common side, and the zero
set will be continuous across the boundary. The situation
in three dimensions is analogous, with the word “triangle”
replaced by “tetrahedron”.
We note that, in order for the interface representation to

be continuous across cell boundaries, it is necessary both
that the mesh be conformant and that each vertex have at
most one signed distance value for each interface.
The signed distance values for a vertex are computed when

the vertex is created in a split operation. When searching for
the point on the true interface that is closest to the vertex,
it is possible to restrict attention those cells that share the
edge being split. This makes the computation very efficient
for the great majority of vertices.

4 Representing Discontinuous Fields

Once we have approximated the interfaces within a cell, we
must decide how to represent fields on either side of the in-
terface. Our algorithm represents the discontinuity by con-
structing a linear field representation for each material in
the cell. In order to specify these representations, each of
the vertices in a cell must have a distinct field value for

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

Figure 2: Ghost values.

each material in the cell. When a vertex does not lie in a
given material, the field value associated with that material
is called a ghost value.
The use of ghost values is illustrated in Figure 2. The

material on the upper side of the interface is represented by
brown and the material on the lower side is represented by
green. The two upper vertices lie in the brown material and,
thus, have regular values for the field in the brown material.
These values are indicated by the the solid brown circles.
The empty green circles indicate that these vertices require
ghost values for the green material. Similarly, the lower cir-
cles lie in the green material and, thus, have regular values
for the field in the green material (solid green circles) and re-
quire ghost values for the field in the brown material (empty
brown circles). Once we have such ghost values, we can de-
fine linear representations for the field in the two regions by
the usual interpolation. If we maintain a conformant mesh
and assign only a single ghost value for a given material to
a vertex, then our field representation will be discontinuous
where it should be (across the interface) but not across cell
boundaries (which would be a spurious discontinuity). Once
again, the situation in three dimensions is analogous, with
the word “triangle” replaced by “tetrahedron”.
In our current implementation, we choose as the ghost

value for a given vertex, field, and material the value of
the field at the point in the material that is closest to the
cell. These points are, of course, exactly the points that
were used to determine the distance map that defines the
approximation to the interface.
The ghost values for a vertex are computed when the ver-

tex is created during the tetrahedral refinement process.

5 Error Bounds and Refinement Strategy

The error bounds employed in our framework are similar to
the nested error bounds used in the ROAM system. Each
cell has two associated kinds of error values, field errors and
material interface errors.
Field errors are first calculated for leaf cells and are then

propagated up the hierarchy. So far, we have only worked
with input data sets that may be considered to consist of
discrete grid points. In this case, the computation of error
bounds for leaf cells is straightforward—the error for a leaf
cell is simply the maximum of the errors associated with
all the grid points from the input data set that it contains.
When fields in the input data set are considered to have

values over finite volumes, the computation of leaf cell errors
will be more complex.
The field error eT for a non-leaf cell is computed from the

errors associated with its two children according to:

eT = max{eT0 , eT1}+ |z(vc)− zT (vc)| (1)

where eT0 and eT1 are the errors of the children; vc is the
vertex that splits the parent into its children; z(vc) is the
field value assigned to vc; and zT (vc) is the field value that
the parent assigns to the spatial location of vc, equivalently,
zT (vc) =

1
2
(z(v0) + z(v1)), where v0 and v1 are the vertices

of the parent’s split edge. This error bound is nested in the
sense that the error of a child is guaranteed not to be greater
than the error of the parent.
The material interface error associated with a leaf node

is the maximum of the errors associated with each of the
interfaces in the node. For each interface, the error is the
maximum distance between the approximate representation
of the interface in the cell and those polygons that define the
true interface and which are contained in the cell.
We initially refine our mesh to meet a user-determined

error bound on the location of interfaces. The mesh is then
further refined, using the ROAM algorithms, to minimize
the error in a given field consistent with a given tetrahedron
count.

6 Results

We have tested our algorithm on a data set resulting from
a simulation of a hypersonic impact between a dense pro-
jectile and a less dense metal block. The simulation uses a
logically rectilinear mesh of dimensions 32x32x52. For each
cell, the density and pressure values are available, as well as
the per-material densities and volume fractions. The physi-
cal dimensions in x, y, and z directions are [0,12] [0,12] and
[-16,4.8].
There are three materials in the simulation: the projec-

tile, the block, and empty space. The interface between the
projectile and the block consists of 38 polygons, the interface
between the projectile and empty space consists of 118 poly-
gons and the interface between empty space and the block
consists of 17574 polygons.
Figures 3 shows a cross section view of the mesh created

by a cutting plane. The black lines are the original interface
polygons intersected by the plane, and the magenta lines are
our approximation to the interface. The interface approxi-
mation error is 0.15. An error of 0.15 means that all of the
vertices in the original material interface meshes are no more
that a physical distance of 0.15 from their associated inter-
face approximation. This is equivalent to an error of (0.5 -
1.5)% when considered against the physical dimensions. A
total of 3174 tetrahedra were required to approximate the
interface to an error of 0.15. The overall mesh contained a
total of 5390 tetrahedra. A total of 11990 tetrahedra were
required to approximate the interface to an error of 0.15 and
the density field to an error of 3. The maximum field ap-
proximation error in the cells containing material interfaces
was 2.84 and the average field error for these cells was 0.007.
These error measurements indicate that separate field repre-
sentations for the materials on either side of a discontinuity
can accurately reconstruct the field.
Figures 4 and 5 compare density fields generated using

linear interpolation of the density values to fields generated
using separate field representations on either side of the dis-
continuity. Figure 5 shows that using explicit field repre-
sentations in the presence of discontinuities can improve the

quality of the field approximation. This can be seen in the
flat horizontal and vertical sections of the block where the
cells approximate a region that contains the block and empty
space. In these cells, the use of explicit representations of
the discontinuities leads to a very accurate representation
of the density field. The corresponding field representations
using linear interpolation, shown in Figure 4, do a very poor
job of capturing the discontinuities. Furthermore, Figure 5
captures more of the dynamics in the area where the pro-
jectile is entering the block (upper left corner). The linear
interpolation of the density values in the region where the
projectile is impacting the block smoothes out the density
field, and does not capture the distinct interface between
the block and the projectile. Figure 6 shows the density
field from Figure 5 with our approximation to the interface
and without the cell outlines.

7 Conclusions and Future Work

We have presented a simplification method for scientific data
sets that explicitly represents material interfaces in mesh
cells. Our algorithm constructs an approximation that can
be used in place of the original data set for visualization
purposes. Explicitly representing the material and implicit
field discontinuities allows us to use multiple field represen-
tations to better approximate the field within each cell. The
use of the tetrahedral subdivision allows us to generalize our
algorithm to a wide variety of data sets and to support in-
teractive level-of-detail exploration and view-dependent sim-
plification. Future work will extend our error calculations
to support complex input cell types such as tetrahedra and
curvilinear hexahedra. Our current ghost value computa-
tion assumes that the field is constant on the other side of
the interface. Higher-order extrapolation methods should
be investigated for ghost value computation to determine if
a superior field approximation can be obtained. Similarly,
material interfaces are defined by approximations based on
linear functions. The tradeoff between cell count and higher-
order approximation methods should be investigated to de-
termine if a better approximation can be obtained without
a great increase in computational complexity. Finally, we
plan to apply our algorithm to more complex unstructured
data sets.

References

[1] Y. Zhou, B. Chen, and A. Kaufman, “Multiresolution
tetrahedral framework for visualizing regular volume
data,” in IEEE Visualization ’97 (R. Yagel and H. Ha-
gen, eds.), pp. 135–142, IEEE Computer Society Press,
1997.

[2] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich, and M. B. Mineev-Weinstein,
“ROAMing terrain: Real-time optimally adapting
meshes,” in IEEE Visualization ’97 (R. Yagel and H. Ha-
gen, eds.), pp. 81–88, IEEE Computer Society Press,
1997.

[3] K. S. Bonnell, “On material boundary surfaces,” Mas-
ter’s thesis, University of California at Davis, June 2000.

[4] K. S. Bonnell, M. A. Duchaineau, D. R. Schikore,
B. Hamann, and K. I. Joy, “Constructing material inter-
faces from data sets with volume-fraction information,”
in IEEE Visualization 2000, 2000. to appear.

Figure 3: Cross section of the tetrahedral mesh showing the
original interfaces and interface approximations.

Figure 4: Density field using linearly interpolated density
values (interface error = 0.15).

Figure 5: Density field using explicit interface representa-
tions and separate field representations (interface error =
0.15).

Figure 6: Figure 5 without the cell outlines.

